https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU/Head
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU
http://www.nanopub.org/nschema#hasAssertion
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU/assertion
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU
http://www.nanopub.org/nschema#hasProvenance
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU/provenance
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU
http://www.nanopub.org/nschema#hasPublicationInfo
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU/pubinfo
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.nanopub.org/nschema#Nanopublication
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU/assertion
https://ieeexplore.ieee.org/document/10564463
http://purl.org/dc/terms/creator
https://orcid.org/0009-0001-1115-9741
https://ieeexplore.ieee.org/document/10564463
http://purl.org/dc/terms/publisher
https://ror.org/01n002310
https://ieeexplore.ieee.org/document/10564463
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
https://w3id.org/fair/ff/terms/article
https://ieeexplore.ieee.org/document/10564463
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
https://w3id.org/fdof/ontology#FAIRDigitalObject
https://ieeexplore.ieee.org/document/10564463
http://www.w3.org/2000/01/rdf-schema#comment
This research investigates the impact of missing data on the performance of machine learning algorithms, with a particular focus on the MIMIC-IV dataset. This project aims to investigate the extent to which missing data negatively impacts the training of machine learning algorithms, and whether demographic groups with a higher proportion of missing data (i.e.,ethnicity) have lower predictive accuracy. Using advanced machine learning and data analysis techniques, our results highlight important considerations related to missing data in medical datasets and provide useful insights for improving predictive modeling and decision support systems in clinical practice offers. Major findings:This investigation leveraged the MIMIC-IV v2.2 dataset—containing de-identified data from 73,141 ICU admissions at Beth Israel Deaconess Medical Center—to study the impact of missing data on machine learning. The research found that while electronic health records (EHRs) offer massive clinical datasets, they are often non-standardized and riddled with missing values. By predicting hospital Length of Stay (LOS), the study showed that as data is missing "not at random," algorithm performance (measured by RMSE) degrades. Specifically, when datasets were intentionally biased to have more missing entries for certain racial groups (Asian, Black, Hispanic, etc.), the predictive error for those specific groups increased in 83% of "aggressive" data removal tests. This highlights that simply imputing or completing missing data can entrench existing healthcare inequities.
https://ieeexplore.ieee.org/document/10564463
http://www.w3.org/2000/01/rdf-schema#label
Addressing the Challenge of Missing Medical Data in Healthcare Analytics: A Focus on Machine Learning Predictions for ICU Length of Stay
https://ieeexplore.ieee.org/document/10564463
https://schema.org/funder
https://ror.org/04fs6r254
https://ieeexplore.ieee.org/document/10564463
https://w3id.org/fdof/ontology#hasMetadata
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU
https://ieeexplore.ieee.org/document/10564463
https://www.w3.org/ns/dcat#contactPoint
mahmad.isaq@outlook.com
https://ieeexplore.ieee.org/document/10564463
https://www.w3.org/ns/dcat#endDate
2024
https://ieeexplore.ieee.org/document/10564463
https://www.w3.org/ns/dcat#startDate
2023
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU/provenance
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU/assertion
http://www.w3.org/ns/prov#wasAttributedTo
https://orcid.org/0009-0008-8411-2742
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU/pubinfo
https://orcid.org/0009-0008-8411-2742
http://xmlns.com/foaf/0.1/name
Emily Regalado
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU
http://purl.org/dc/terms/created
2026-01-14T05:53:32.919Z
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU
http://purl.org/dc/terms/creator
https://orcid.org/0009-0008-8411-2742
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU
http://purl.org/dc/terms/license
https://creativecommons.org/licenses/by/4.0/
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU
http://purl.org/nanopub/x/introduces
https://ieeexplore.ieee.org/document/10564463
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU
http://purl.org/nanopub/x/wasCreatedAt
https://nanodash.knowledgepixels.com/
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU
https://w3id.org/np/o/ntemplate/wasCreatedFromProvenanceTemplate
https://w3id.org/np/RA7lSq6MuK_TIC6JMSHvLtee3lpLoZDOqLJCLXevnrPoU
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU
https://w3id.org/np/o/ntemplate/wasCreatedFromPubinfoTemplate
https://w3id.org/np/RA0J4vUn_dekg-U1kK3AOEt02p9mT2WO03uGxLDec1jLw
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU
https://w3id.org/np/o/ntemplate/wasCreatedFromPubinfoTemplate
https://w3id.org/np/RAukAcWHRDlkqxk7H2XNSegc1WnHI569INvNr-xdptDGI
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU
https://w3id.org/np/o/ntemplate/wasCreatedFromTemplate
https://w3id.org/np/RArM5GTwgxg9qslGX-XiQ-KTTUwdoM0KB1YqmT4GqTizA
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU/sig
http://purl.org/nanopub/x/hasAlgorithm
RSA
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU/sig
http://purl.org/nanopub/x/hasPublicKey
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAxzr6UBGMW6c8tegz0babaledWUEQ0PLDE4tp7Iinbe2DZtAtY5JUptKYuStWDZx+QER4808P8dejNWRnBDzgthYJm/AyNSXflHSJhz2+NC+h7RylOLxbwLEQocmyKKiYxa2gT85m6ajVL2M6TnfG67nnK+K2f7iCGL6wYXRITD1q+7+5SWqBdDXIV921W4IKWaD2GJk+NRBoOqQhbsrk8Tn5XsNd7DMYVHk47oMDGbeBnrOIoRPsbBgAcoCsxxhiB9yN6Lf8EUbnlXVEDzJuZk048L1BDZL+6nkA8btTQGP2ijUFWA7rTrod3LjUDQWLZS95njjl867dtmv/znYkzwIDAQAB
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU/sig
http://purl.org/nanopub/x/hasSignature
ew01BbW15Sne2LHMMUh5OFGNSNoEiFOf0YvAGWbToB5SlqhFDy27lOOt4ByCI2tJ2ElqcYWl+GfHFJt0FFR7ET5ZU65hxRrqNjVqz1hMXZhcqdHpEgJYOxKUoOHz4QfRs6uvreJlW33Pol9XIAxJ89jCJuhUVP2HbkF9e83wK/39Q9OAFi1kOqI3iPIXlM3ZOopFBF4/yy56kbesc7MZIKN6uMBry6913XNy3PpLkMDGpwCh2dfFA3osGCuG1qQdYHaIFTfW9o+55xDtxM0yt8WCZMYhdobhYlb0NPya2Gh5TwoQ0BKGX6c4SquQyPXXIqQ2L7SsMXNrZsarPqiH7w==
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU/sig
http://purl.org/nanopub/x/hasSignatureTarget
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU
https://w3id.org/np/RA0cxDyf2c5KPzhRG4FFikLxasJQNI8Ep7R5ulFG6UNRU/sig
http://purl.org/nanopub/x/signedBy
https://orcid.org/0009-0008-8411-2742