https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI/Head
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI
http://www.nanopub.org/nschema#hasAssertion
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI/assertion
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI
http://www.nanopub.org/nschema#hasProvenance
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI/provenance
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI
http://www.nanopub.org/nschema#hasPublicationInfo
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI/pubinfo
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.nanopub.org/nschema#Nanopublication
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI/assertion
https://ieeexplore.ieee.org/abstract/document/10903272
http://purl.org/dc/terms/creator
https://orcid.org/0000-0001-8726-8226
https://ieeexplore.ieee.org/abstract/document/10903272
http://purl.org/dc/terms/creator
https://orcid.org/0000-0001-9487-5622
https://ieeexplore.ieee.org/abstract/document/10903272
http://purl.org/dc/terms/creator
https://orcid.org/0000-0002-3588-6257
https://ieeexplore.ieee.org/abstract/document/10903272
http://purl.org/dc/terms/publisher
https://ror.org/01n002310
https://ieeexplore.ieee.org/abstract/document/10903272
http://purl.org/dc/terms/subject
http://edamontology.org/topic_3316
https://ieeexplore.ieee.org/abstract/document/10903272
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
https://w3id.org/fair/ff/terms/article
https://ieeexplore.ieee.org/abstract/document/10903272
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
https://w3id.org/fdof/ontology#FAIRDigitalObject
https://ieeexplore.ieee.org/abstract/document/10903272
http://www.w3.org/2000/01/rdf-schema#comment
Community detection plays a pivotal role in social
network analysis by partitioning networks into cohesive groups
of vertices with dense intra-group connections and sparse intergroup connections. In this paper, we utilized a scholarly social
network based on researchers’ topic similarity derived from
their publication metadata to identify interdisciplinary research
communities. As topics often form a hierarchy, we hypothesize
that the constructed scholarly network will exhibit hierarchical
community structures. Therefore, we explore the efficacy of two
prominent community detection algorithms, Louvain and Spectral clustering, known for their capacity to detect hierarchical
community structures within networks. While both algorithms
demonstrate this capability, the original Louvain algorithm is
susceptible to the resolution limit problem due to its reliance on
the modularity measure. To address this limitation, we propose
the nested hierarchical Louvain algorithm, which iteratively
partitions the network based on previously identified subgraphs,
and we find that the bias towards large communities is mitigated.
To evaluate the hierarchy produced by each of the algorithms,
we employ the Cophenetic Correlation Coefficient (CPCC), a
metric commonly used in hierarchical clustering evaluations
but less frequently utilized in hierarchical community analysis.
We argue that CPCC can be a useful measure to identify
the presence of implicit hierarchical community structure in
social networks when it is not explicitly available from domain
knowledge while also further mitigating the inherent bias present
in using modularity as a metric. Experimental results, conducted
on both synthetic networks and the scholarly social network,
demonstrate that the nested hierarchical Louvain algorithm, as
well as Spectral Clustering, successfully identifies more finely
structured hierarchical communities, offering greater depth in
the dendrogram compared to the basic Louvain algorithm.
Index Terms—Social Networks, Hierarchical Community Detection, Clustering, Topic Models
https://ieeexplore.ieee.org/abstract/document/10903272
http://www.w3.org/2000/01/rdf-schema#label
Identifying Hierarchical Community Structures in Content-Based Scholarly Social Networks
https://ieeexplore.ieee.org/abstract/document/10903272
https://schema.org/funder
https://ror.org/021nxhr62
https://ieeexplore.ieee.org/abstract/document/10903272
https://w3id.org/fdof/ontology#hasMetadata
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI
https://ieeexplore.ieee.org/abstract/document/10903272
https://www.w3.org/ns/dcat#contactPoint
john.sheppard@montana.edu
https://ieeexplore.ieee.org/abstract/document/10903272
https://www.w3.org/ns/dcat#endDate
2025-03-04
https://ieeexplore.ieee.org/abstract/document/10903272
https://www.w3.org/ns/dcat#startDate
2023
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI/provenance
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI/assertion
http://www.w3.org/ns/prov#wasAttributedTo
https://orcid.org/0009-0008-8411-2742
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI/pubinfo
https://orcid.org/0009-0008-8411-2742
http://xmlns.com/foaf/0.1/name
Emily Regalado
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI
http://purl.org/dc/terms/created
2026-02-04T18:00:04.226Z
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI
http://purl.org/dc/terms/creator
https://orcid.org/0009-0008-8411-2742
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI
http://purl.org/dc/terms/license
https://creativecommons.org/licenses/by/4.0/
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI
http://purl.org/nanopub/x/introduces
https://ieeexplore.ieee.org/abstract/document/10903272
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI
http://purl.org/nanopub/x/wasCreatedAt
https://nanodash.knowledgepixels.com/
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI
https://w3id.org/np/o/ntemplate/wasCreatedFromProvenanceTemplate
https://w3id.org/np/RA7lSq6MuK_TIC6JMSHvLtee3lpLoZDOqLJCLXevnrPoU
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI
https://w3id.org/np/o/ntemplate/wasCreatedFromPubinfoTemplate
https://w3id.org/np/RA0J4vUn_dekg-U1kK3AOEt02p9mT2WO03uGxLDec1jLw
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI
https://w3id.org/np/o/ntemplate/wasCreatedFromPubinfoTemplate
https://w3id.org/np/RAukAcWHRDlkqxk7H2XNSegc1WnHI569INvNr-xdptDGI
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI
https://w3id.org/np/o/ntemplate/wasCreatedFromTemplate
https://w3id.org/np/RArM5GTwgxg9qslGX-XiQ-KTTUwdoM0KB1YqmT4GqTizA
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI/sig
http://purl.org/nanopub/x/hasAlgorithm
RSA
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI/sig
http://purl.org/nanopub/x/hasPublicKey
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAxzr6UBGMW6c8tegz0babaledWUEQ0PLDE4tp7Iinbe2DZtAtY5JUptKYuStWDZx+QER4808P8dejNWRnBDzgthYJm/AyNSXflHSJhz2+NC+h7RylOLxbwLEQocmyKKiYxa2gT85m6ajVL2M6TnfG67nnK+K2f7iCGL6wYXRITD1q+7+5SWqBdDXIV921W4IKWaD2GJk+NRBoOqQhbsrk8Tn5XsNd7DMYVHk47oMDGbeBnrOIoRPsbBgAcoCsxxhiB9yN6Lf8EUbnlXVEDzJuZk048L1BDZL+6nkA8btTQGP2ijUFWA7rTrod3LjUDQWLZS95njjl867dtmv/znYkzwIDAQAB
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI/sig
http://purl.org/nanopub/x/hasSignature
fkK51Bxk/kpAi/xzeR+/jziwQtmabO5O7eMYmxjtxqSz+V6XiBCVAKMTrJKIWjHaoG4bdMip97ywI2MBOwJI5V5J04gWqzaOHvZR5l8LeUYF+rMvkQRksam9GpTi5PWj4pxOKCpIvv693qmlz/8Tnon2+gJl7ABgEkNSzqoGLX/53PLo0btDV44o3coQ8567PeXwpyYTPZufJWtDCCa5byTrSPef2TFlCDSfFBotKbD0xWPxKWodss7fLHVvWH1Bh4KXDswYt9Yi34M9jLXX941H0T+S0eweZYR/4BVFn1cnHma03DmEKJiV07ka2wRQU9uKBYRt//j/q79bcvykig==
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI/sig
http://purl.org/nanopub/x/hasSignatureTarget
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI
https://w3id.org/np/RACmvAwqmb-z9StuvMLOyUGbEBa8YCAbR0AjAi3DhClEI/sig
http://purl.org/nanopub/x/signedBy
https://orcid.org/0009-0008-8411-2742