@prefix this: . @prefix sub: . @prefix np: . @prefix dct: . @prefix xsd: . @prefix rdfs: . @prefix prov: . @prefix npx: . sub:Head { this: a np:Nanopublication; np:hasAssertion sub:assertion; np:hasProvenance sub:provenance; np:hasPublicationInfo sub:pubinfo . } sub:assertion { a ; ""; "Oceanography" . a ; ""; "Environmental research" . a ; ""; "Earth observation" . a ; "imagery notebook"; "43.336724313326556"; "42.6" . a ; "physical object"; "11.511789181692096"; "8.3" . a ; ; "105f09b9-47be-4ca1-9262-fad1c4f7ba3c"; "POLYGON ((26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471))" . a ; "POLYGON ((-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054))"; "-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054" . a ; "POLYGON ((119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617))"; "119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617" . a ; ; "3cbacdad-e5c9-43de-bd48-4ea2eac57e00"; "POLYGON ((-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054))" . a ; ; "9942e93e-7cd1-41d2-8ba0-dfbe2cca9ebb"; "POLYGON ((119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617))" . a ; ; "b7f011f5-7272-4432-8e4b-a4f7f7b39969"; "POLYGON ((-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663))" . a ; "POLYGON ((-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663))"; "-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663" . a ; "service-account-enrichment" . a ; "POLYGON ((26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471))"; "26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471" . a , , , , ; dct:doi "https://doi.org/10.24424/cq0k-h769"; "False"; "https://w3id.org/ro-id/b34facfa-cea8-48f5-89f6-f11ce00812a9"; "2023-03-20 16:23:52.755983+00:00"; "mailto:environmental.ds.book@gmail.com"; , , ; , ; , , , ; "1818450"^^xsd:integer; "https://api.rohub.org/api/ros/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/crate/download/"; ; ; ; "2022-01-28 16:07:18.008253+00:00"; "2024-03-05 12:17:35.222594+00:00"; "2022-01-28 16:07:18.008253+00:00"; "The research object refers to the Detecting floating objects using deep learning and Sentinel-2 imagery notebook published in the Environmental Data Science book."; "application/ld+json"; , , , , ; "https://w3id.org/ro-id/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a"; "Environmental Science"; ; "Jupyter Notebook"; "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book - snapshot", "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book"; ; ; "MANUAL"; "https://w3id.org/ro-id/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/0edc91a9-9049-4357-bad7-677880c8fd8a", "https://w3id.org/ro-id/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/19f9ef3f-8678-48f5-a9ac-cf364939dcda", "https://w3id.org/ro-id/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/4b55fad1-092b-4657-a004-aafc05499e18", "https://w3id.org/ro-id/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/e2eba045-3c2c-44a1-aa39-06cc232d05f9"; "https://w3id.org/ro-id/c3ed4115-e129-474c-b43d-4b7ed1e44411"; "https://w3id.org/ro-id/108ff0bd-b0de-4305-9927-a88de694b325", "https://w3id.org/ro-id/4503a6f5-792d-422c-8d64-345f3db6b1c1", "https://w3id.org/ro-id/47ced8c1-777f-4ef7-9e76-468147890437", "https://w3id.org/ro-id/5f6ed1ba-6096-43ff-923c-78a2702c01f7", "https://w3id.org/ro-id/65d47f21-d901-4b2b-8974-67e3d88b6749", "https://w3id.org/ro-id/8c57a69d-6767-4445-a8aa-3266b2f44c1f", "https://w3id.org/ro-id/950aac7e-50fa-47dd-82cf-e0c3dee413a9", "https://w3id.org/ro-id/97fbcd8b-261a-4dbd-b34e-7cfa567e0743"; "https://w3id.org/ro-id/2c0dffab-b0cb-40c3-9cf6-b64738d8af0b", "https://w3id.org/ro-id/978afb41-9d02-423b-b299-501c9b89ad1e"; "https://w3id.org/ro-id/163c83be-2ee7-402b-835c-ca5cc20c43c6", "https://w3id.org/ro-id/2d238204-5886-447d-b3ab-206367ad511c", "https://w3id.org/ro-id/aef07bda-564b-47c2-bc83-71d8d2e38985", "https://w3id.org/ro-id/fa9ab5e5-83fd-4f5f-b4d1-7a4364be87e3"; "https://w3id.org/ro-id/172e5958-b68d-453e-aae8-0755f5d744e2", "https://w3id.org/ro-id/2185b762-02f1-4cdf-b9a3-7a77f9902ce7", "https://w3id.org/ro-id/368a358e-926d-4d70-9b65-d7449b2c7422", "https://w3id.org/ro-id/43fae290-ef3e-4812-993d-406ae623f466", "https://w3id.org/ro-id/831f29a8-3d29-45fd-bf6e-003440d7796c", "https://w3id.org/ro-id/96773044-7502-4b92-bed3-18ce701ee448", "https://w3id.org/ro-id/ec3b493e-c514-45f1-ad86-48c70995b511"; "https://w3id.org/ro-id/14df5ee1-7105-4162-9ec2-f8fa8a984a23", "https://w3id.org/ro-id/7b089c66-0928-4619-b9a2-613f513494b5"; "https://w3id.org/ro-id/02e3c75c-977e-441a-84d2-e5e2b4fd373e", "https://w3id.org/ro-id/4a888bb5-e439-43d4-a6d3-1c9d15b1ccb4", "https://w3id.org/ro-id/66ce8c04-5a06-4dad-8169-2ae6b2d33b3b", "https://w3id.org/ro-id/69ac3651-313f-423f-9b58-1e2ae9a65cc1", "https://w3id.org/ro-id/80649e48-b201-4e96-8deb-0d65b3807d04"; "https://w3id.org/ro-id/66c9fa6b-a6c6-43fb-8d40-105615be1c7a", "https://w3id.org/ro-id/937fa6a4-c8ef-4330-b69d-97a44da87910"; "Raquel Carmo, Jamila Mifdal, and Alejandro Coca-Castro. \"Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book.\" ROHub. Jan 28 ,2022. https://doi.org/10.24424/cq0k-h769." . a . a , ; ; "input" . a , ; , , , , , ; "tool" . a , ; , ; "biblio" . a , ; ; "output" . a , ; ; "https://github.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/blob/main/.lock/conda-osx-64.lock"; ; "2022-01-31 11:16:56.332731+00:00"; "2023-03-20 16:23:45.561179+00:00"; "Lock conda file for osx-64 OS of the Jupyter Book hosted by the Environmental Data Science Book"; ; "Lock conda file for osx-64"; "2022-01-31 11:16:56.332731+00:00" . a dct:BibliographicResource, , ; ; "https://doi.org/10.5194/isprs-annals-V-3-2021-285-2021"; ; "2022-01-28 16:07:43.339740+00:00"; "2023-03-20 16:23:47.348408+00:00"; "Publication with further details of the modelling published in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences"; ; "Towards detecting floating objects on a global scale with learned spatial features using sentinel 2"; "2022-01-28 16:07:43.339740+00:00" . a , ; ; "https://github.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/blob/main/.lock/requirements.txt"; ; "2022-01-31 11:27:45.283002+00:00"; "2023-03-20 16:23:45.892002+00:00"; "Pip requirements file containing libraries to install after conda lock"; "text/plain"; ; "Pip requirements for lock conda environments"; "2022-01-31 11:27:45.283002+00:00" . a , , ; ; "https://doi.org/10.5281/zenodo.5827376"; ; "2022-01-28 16:07:34.662177+00:00"; "2023-03-20 16:23:45.435827+00:00"; "Contains input analysis-ready input images used in the Jupyter notebook of Detecting floating objects using deep learning and Sentinel-2 imagery"; ; "Input images"; "2022-01-28 16:07:34.662177+00:00" . a , , ; ; "https://edsbook.org/gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/notebook.html"; ; "2022-01-31 11:16:52.095424+00:00"; "2023-03-20 16:23:52.081520+00:00"; "Rendered version of the Jupyter Notebook hosted by the Environmental Data Science Book"; "text/html"; ; "Online rendered version of the Jupyter notebook"; "2022-01-31 11:16:52.095424+00:00" . a , ; ; "https://raw.githubusercontent.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/main/.binder/environment.yml"; ; "2022-01-31 11:32:03.379546+00:00"; "2023-03-20 16:23:48.262597+00:00"; "Conda environment when user want to have the same libraries installed without concerns of package versions"; ; "Conda environment"; "2022-01-31 11:32:03.379546+00:00" . a , ; ; "https://github.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/blob/main/.lock/conda-linux-64.lock"; ; "2022-01-31 11:16:54.901085+00:00"; "2023-03-20 16:23:48.148379+00:00"; "Lock conda file for linux-64 OS of the Jupyter Book hosted by the Environmental Data Science Book"; ; "Lock conda file for linux-64"; "2022-01-31 11:16:54.901085+00:00" . a , , ; ; "https://raw.githubusercontent.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/main/notebook.ipynb"; ; "2022-01-28 16:07:32.857476+00:00"; "2023-03-20 16:23:47.437056+00:00"; "Jupyter Notebook hosted by the Environmental Data Science Book"; ; "Jupyter notebook"; "2022-01-28 16:07:32.857476+00:00"; "https://w3id.org/ro-id/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/resources/83b2492d-b4bb-4f8c-acc9-775e288a971c" . a , , ; ; "https://doi.org/10.5281/zenodo.5911143"; ; "2022-01-28 16:07:38.160206+00:00"; "2023-03-20 16:23:52.658455+00:00"; "Contains outputs, (predictions and interactive figure), generated in the Jupyter notebook of Detecting floating objects using deep learning and Sentinel-2 imagery"; ; "Outputs"; "2022-01-28 16:07:38.160206+00:00" . a , , ; ; "1799691"^^xsd:integer; "https://api.rohub.org/api/resources/d5cbc677-05e5-482d-a591-f08ef03c0e81/download/"; ; "2023-03-05 21:59:06.519381+00:00"; "2023-03-20 16:23:46.790872+00:00"; "image/png"; ; "sketch_680px.png"; "2023-03-05 21:59:06.519381+00:00" . a dct:BibliographicResource, , ; ; "https://210507-004.oceansvirtual.com/view/content/skdwP611e3583eba2b/ecf65c2aaf278557ad05c213247d67a54196c9376a0aed8f1875681f182daeed"; ; "2022-01-28 16:07:40.875698+00:00"; "2023-03-20 16:23:52.401518+00:00"; "Related publication of the modelling published in OCEANS 2021"; ; "Detecting macro floating objects on coastal water bodies using sentinel-2 data"; "2022-01-28 16:07:40.875698+00:00" . a ; dct:conformsTo ; . a ; "communications and radar"; "100.0"; "0.5148147940635681" . a ; "Literature"; "Arts, culture and entertainment/Arts and entertainment/Literature" . a ; "object"; "11.76470588235294"; "9.4" . a ; "Environmental Data Science"; "16.02002503128911"; "12.8" . a ; "geology"; "100.0"; "0.5625630021095276" . a ; "Language"; "Arts, culture and entertainment/Culture/Language" . a ; "imagery"; "13.642052565707132"; "10.9" . a ; "notebook"; "12.891113892365455"; "10.3" . a ; "book"; "14.147018030513175"; "10.2" . a ; "object"; "9.431345353675452"; "6.8" . a ; "research object"; "34.28280773143439"; "33.7" . a ; "learning"; "10.540915395284328"; "7.6" . a ; "detection"; "15.395284327323164"; "11.1" . a ; "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book."; "43.54354354354354"; "43.5" . a ; "Environmental Data Science book"; "15.259409969481181"; "15.0" . a ; "deep learning"; "5.391658189216684"; "5.3" . a ; "engineering"; "100.0"; "0.5148147940635681" . a ; "refer to the detecting"; "1.7293997965412005"; "1.7" . a ; "research"; "12.891113892365455"; "10.3" . a ; "imagery"; "13.730929264909848"; "9.9" . a ; "The research object refers to the Detecting floating objects using deep learning and Sentinel-2 imagery notebook published in the Environmental Data Science book."; "56.45645645645645"; "56.4" . a ; "research"; "12.621359223300972"; "9.1" . a ; "detecting"; "15.269086357947433"; "12.2" . a ; "earth sciences"; "100.0"; "0.5625630021095276" . a ; "notebook"; "12.621359223300972"; "9.1" . a ; "Book industry"; "Economy, business and finance/Economic sector/Media/Book industry" . a , ; "POLYGON ((26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471))" . a , ; "POLYGON ((-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663))" . a , ; "POLYGON ((-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054))" . a , ; "POLYGON ((119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617))" . a . a ; "publishing"; "100.0"; "4.8" . a ; "Sentinel-2"; "17.521902377972463"; "14.0" . a ; "Education"; "Education" . a , ; "environmental.ds.book@gmail.com"; "Environmental Data Science Book Community" . a ; "The Alan Turing Institute"; "Alejandro Coca-Castro" . a ; "European Space Agency Φ-lab"; "Jamila Mifdal" . a ; "European Space Agency Φ-lab"; "Raquel Carmo" . } sub:provenance { sub:assertion prov:wasDerivedFrom . } sub:pubinfo { this: a npx:RoCrateNanopub; dct:created "2025-11-11T16:12:36.517+01:00"^^xsd:dateTime; npx:introduces ; rdfs:label "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book - snapshot" . sub:sig npx:hasAlgorithm "RSA"; npx:hasPublicKey "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA4pPaESKwmC6l37P86K6TNLq6yeQtc7m9CvcqauLs/1FC0viHvQnFBgxj0a+loPDv/Egwe6OqFpa0iW9Ypnyz9YPoh+pxbRXonbuMOb+8Ry9hXZ+TEKfWjhjVDGEaClwfRwglh2HI/xfV4CD9AgvDOEoZQiyta8a90PYwJ3G6e70oCHTn61+OWTkI9KRYHOYgg3btdy2Z7q/30PTFawb2ZT5aIfIJYobUYv2a7yhtcqWCHZeKv0bxGnRjTFNx1rscBMlLJSzvRtpQc1cCRVEPFZHo1adaXCI9tGvn4cxeNQ96y8dxkN1XhpaJairde+23MDzf42Oe97KG2HYzKiyVnQIDAQAB"; npx:hasSignature "P8TqUNe84xp0cJVC4TAty3iDMu0oMBUxu0DPYC+35SJV27efxfLSPPtTIlJYRFzLfcM8pwAFP/IdnTi3y/j9knFM/RtKfaII4hw9gg0fXXwdB2N1sJqGPBepug3M8spIzlxWtKTgqnsJoGaqeLLxykrOfdy13xkMM00ovqH2uxsPOSknVXHx4nvRggx3T3jg41mVc2wzj8PbxWnNweM9vKV6+gwsIiFM8xMniFSzsBhGswAG6t5SkNHynixdOmepzaiTzAN09jdAyFjI8DMT+UelTnj0slv4BrB1EF1a/erV/AM95GmPPycxoGB3OTDCkjYbiw99rk0XWvNQnLjmjg=="; npx:hasSignatureTarget this:; npx:signedBy . }