@prefix dcterms: .
@prefix foaf: .
@prefix np: .
@prefix npx: .
@prefix nt: .
@prefix orcid: .
@prefix pico: .
@prefix prov: .
@prefix rdfs: .
@prefix sciencelive: .
@prefix sub1: .
@prefix this: .
@prefix xsd: .
sub1:Head {
this: a np:Nanopublication;
np:hasAssertion sub1:assertion;
np:hasProvenance sub1:provenance;
np:hasPublicationInfo sub1:pubinfo .
}
sub1:assertion {
sub1:comparatorGroup dcterms:description "Different ML/DL architectures compared against each other; comparison of input data configurations (spectral bands, indices, temporal features); validation approaches (cross-validation, independent test sets, spatial holdout); and where available, comparison with traditional remote sensing methods (thresholding, spectral indices)" .
sub1:interventionGroup dcterms:description "Machine learning and deep learning algorithms applied to Sentinel-2 multispectral imagery for wildfire applications, including convolutional neural networks (CNN, U-Net, ResNet, EfficientNet), random forest, support vector machines, gradient boosting methods, and attention-based architectures. Includes both uni-temporal and bi-temporal approaches, as well as fusion with Sentinel-1 SAR data" .
sub1:machine-learning-algorithms-for-wildfire-detection a pico:PICO, sciencelive:DescriptiveResearchQuestion;
pico:comparatorGroup sub1:comparatorGroup;
pico:interventionGroup sub1:interventionGroup;
pico:outcomeGroup sub1:outcomeGroup;
pico:population sub1:population;
dcterms:description "What machine learning algorithms have been developed and validated for wildfire detection, risk prediction, and burned area mapping using Sentinel-2 imagery, and what are their reported performance metrics, geographic coverage, and application readiness?";
rdfs:label "Machine Learning Algorithms for Wildfire Detection and Burned Area Mapping Using Sentinel-2 Imagery: A Systematic Review" .
sub1:outcomeGroup dcterms:description "Algorithm performance metrics (accuracy, precision, recall, F1-score, IoU, overall accuracy, kappa coefficient), geographic transferability, computational requirements, input data requirements, code and model availability, and operational readiness for wildfire management applications" .
sub1:population dcterms:description "Geographic regions affected by wildfires globally, with focus on areas where Sentinel-2 multispectral imagery has been applied for wildfire-related studies, including Mediterranean Europe, California, Australia, Canada, and other fire-prone ecosystems" .
}
sub1:provenance {
sub1:assertion prov:wasAttributedTo orcid:0000-0002-1784-2920 .
}
sub1:pubinfo {
orcid:0000-0002-1784-2920 foaf:name "Anne Fouilloux" .
this: dcterms:created "2026-01-06T10:11:08+00:00"^^xsd:dateTime;
dcterms:creator orcid:0000-0002-1784-2920;
dcterms:license ;
npx:introduces sub1:machine-learning-algorithms-for-wildfire-detection;
npx:wasCreatedAt ;
rdfs:label "PICO Research Question: Machine Learning Algorithms for Wildfire Detection and Burned Area Mappin...";
nt:wasCreatedFromProvenanceTemplate ;
nt:wasCreatedFromPubinfoTemplate ,
, ;
nt:wasCreatedFromTemplate .
sub1:sig npx:hasAlgorithm "RSA";
npx:hasPublicKey "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAosxbitQQzLXi1949Zd9JmSkGfYHHlj/CZZ7iiYs1TrZ5/Jk/wGA7kHEv7f9NtsinOdBo9EtHj/jgHE5W2Vv404JbOAY280PvH5Jns5ObWdVZmtHeCw0ZIdPEqNrurrEweKhzcTJW/YRpYWPwVPo47XyIW6IAcmx6gfdtmdPddMpplqExrP6G99ksXfXlZI0InQtZJRSGK5lYLLNzaofFtupPI5OAAGjooDyHijp0Ap2HIXH6WpO4S44cFPKU34pH2xhIY4/XT5DG1X5UoiVHs2Yoo30BHFudj/kAFwdzcy6Yh4tMDaB3ox6p7pi267d7n0y7kypC0Nt+hfgHQ1FpgwIDAQAB";
npx:hasSignature "KpV6CO4JE6MBySWTsHULx3ctMFogFcuRKb5/7ECwxqXmMzExpw7yiqwkT7QiJMUEXjXdtUNZUWtqbYC+tVvE69m0RibQyOqNauqY1YSLnN3I+0lh05ZObBHQGcWiedQgPFw2zf9eeVSWtVFRA51PNK0LE7Ed1x/bhVWprNTymwd3GmJ1n98hSTAJv5TujRtZEHPB8693rg/mCVirI7Zp60H+yG8AxwckKKXn0fwS0+cNbFpPE2IBzPnUEiuQy9Q74UQwqhAZ8tYG90kugEGDiJq6gZIIjO0eZlOXIZYGUliS9v3dgUO8HqPlk1+acWouH1oRk5tJ4urV75k7C/J56g==";
npx:hasSignatureTarget this:;
npx:signedBy orcid:0000-0002-1784-2920 .
}