@prefix dcterms: . @prefix foaf: . @prefix np: . @prefix npx: . @prefix nt: . @prefix orcid: . @prefix pico: . @prefix prov: . @prefix rdfs: . @prefix sciencelive: . @prefix sub1: . @prefix this: . @prefix xsd: . sub1:Head { this: a np:Nanopublication; np:hasAssertion sub1:assertion; np:hasProvenance sub1:provenance; np:hasPublicationInfo sub1:pubinfo . } sub1:assertion { sub1:comparatorGroup dcterms:description "Different ML/DL architectures compared against each other; comparison of input data configurations (spectral bands, indices, temporal features); validation approaches (cross-validation, independent test sets, spatial holdout); and where available, comparison with traditional remote sensing methods (thresholding, spectral indices)" . sub1:interventionGroup dcterms:description "Machine learning and deep learning algorithms applied to Sentinel-2 multispectral imagery for wildfire applications, including convolutional neural networks (CNN, U-Net, ResNet, EfficientNet), random forest, support vector machines, gradient boosting methods, and attention-based architectures. Includes both uni-temporal and bi-temporal approaches, as well as fusion with Sentinel-1 SAR data" . sub1:machine-learning-algorithms-for-wildfire-detection a pico:PICO, sciencelive:DescriptiveResearchQuestion; pico:comparatorGroup sub1:comparatorGroup; pico:interventionGroup sub1:interventionGroup; pico:outcomeGroup sub1:outcomeGroup; pico:population sub1:population; dcterms:description "What machine learning algorithms have been developed and validated for wildfire detection, risk prediction, and burned area mapping using Sentinel-2 imagery, and what are their reported performance metrics, geographic coverage, and application readiness?"; rdfs:label "Machine Learning Algorithms for Wildfire Detection and Burned Area Mapping Using Sentinel-2 Imagery: A Systematic Review" . sub1:outcomeGroup dcterms:description "Algorithm performance metrics (accuracy, precision, recall, F1-score, IoU, overall accuracy, kappa coefficient), geographic transferability, computational requirements, input data requirements, code and model availability, and operational readiness for wildfire management applications" . sub1:population dcterms:description "Geographic regions affected by wildfires globally, with focus on areas where Sentinel-2 multispectral imagery has been applied for wildfire-related studies, including Mediterranean Europe, California, Australia, Canada, and other fire-prone ecosystems" . } sub1:provenance { sub1:assertion prov:wasAttributedTo orcid:0000-0002-1784-2920 . } sub1:pubinfo { orcid:0000-0002-1784-2920 foaf:name "Anne Fouilloux" . this: dcterms:created "2026-01-06T10:11:08+00:00"^^xsd:dateTime; dcterms:creator orcid:0000-0002-1784-2920; dcterms:license ; npx:introduces sub1:machine-learning-algorithms-for-wildfire-detection; npx:wasCreatedAt ; rdfs:label "PICO Research Question: Machine Learning Algorithms for Wildfire Detection and Burned Area Mappin..."; nt:wasCreatedFromProvenanceTemplate ; nt:wasCreatedFromPubinfoTemplate , , ; nt:wasCreatedFromTemplate . sub1:sig npx:hasAlgorithm "RSA"; npx:hasPublicKey "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAosxbitQQzLXi1949Zd9JmSkGfYHHlj/CZZ7iiYs1TrZ5/Jk/wGA7kHEv7f9NtsinOdBo9EtHj/jgHE5W2Vv404JbOAY280PvH5Jns5ObWdVZmtHeCw0ZIdPEqNrurrEweKhzcTJW/YRpYWPwVPo47XyIW6IAcmx6gfdtmdPddMpplqExrP6G99ksXfXlZI0InQtZJRSGK5lYLLNzaofFtupPI5OAAGjooDyHijp0Ap2HIXH6WpO4S44cFPKU34pH2xhIY4/XT5DG1X5UoiVHs2Yoo30BHFudj/kAFwdzcy6Yh4tMDaB3ox6p7pi267d7n0y7kypC0Nt+hfgHQ1FpgwIDAQAB"; npx:hasSignature "KpV6CO4JE6MBySWTsHULx3ctMFogFcuRKb5/7ECwxqXmMzExpw7yiqwkT7QiJMUEXjXdtUNZUWtqbYC+tVvE69m0RibQyOqNauqY1YSLnN3I+0lh05ZObBHQGcWiedQgPFw2zf9eeVSWtVFRA51PNK0LE7Ed1x/bhVWprNTymwd3GmJ1n98hSTAJv5TujRtZEHPB8693rg/mCVirI7Zp60H+yG8AxwckKKXn0fwS0+cNbFpPE2IBzPnUEiuQy9Q74UQwqhAZ8tYG90kugEGDiJq6gZIIjO0eZlOXIZYGUliS9v3dgUO8HqPlk1+acWouH1oRk5tJ4urV75k7C/J56g=="; npx:hasSignatureTarget this:; npx:signedBy orcid:0000-0002-1784-2920 . }