https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU/Head
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU
http://www.nanopub.org/nschema#hasAssertion
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU/assertion
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU
http://www.nanopub.org/nschema#hasProvenance
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU/provenance
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU
http://www.nanopub.org/nschema#hasPublicationInfo
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU/pubinfo
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.nanopub.org/nschema#Nanopublication
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU/assertion
https://arxiv.org/abs/2403.10730
http://purl.org/dc/terms/creator
https://orcid.org/0000-0001-9487-5622
https://arxiv.org/abs/2403.10730
http://purl.org/dc/terms/creator
https://orcid.org/0000-0003-2911-8558
https://arxiv.org/abs/2403.10730
http://purl.org/dc/terms/publisher
https://ror.org/05bnh6r87
https://arxiv.org/abs/2403.10730
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
https://w3id.org/fair/ff/terms/article
https://arxiv.org/abs/2403.10730
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
https://w3id.org/fdof/ontology#FAIRDigitalObject
https://arxiv.org/abs/2403.10730
http://www.w3.org/2000/01/rdf-schema#comment
In Precision Agriculture, the utilization of management zones (MZs) that take into account within-field variability facilitates effective fertilizer management. This approach enables the optimization of nitrogen (N) rates to maximize crop yield production and enhance agronomic use efficiency. However, existing works often neglect the consideration of responsivity to fertilizer as a factor influencing MZ determination. In response to this gap, we present a MZ clustering method based on fertilizer responsivity. We build upon the statement that the responsivity of a given site to the fertilizer rate is described by the shape of its corresponding N fertilizer-yield response (N-response) curve. Thus, we generate N-response curves for all sites within the field using a convolutional neural network (CNN). The shape of the approximated N-response curves is then characterized using functional principal component analysis. Subsequently, a counterfactual explanation (CFE) method is applied to discern the impact of various variables on MZ membership. The genetic algorithm-based CFE solves a multi-objective optimization problem and aims to identify the minimum combination of features needed to alter a site's cluster assignment. Results from two yield prediction datasets indicate that the features with the greatest influence on MZ membership are associated with terrain characteristics that either facilitate or impede fertilizer runoff, such as terrain slope or topographic aspect. Major findings:Researchers at Montana State University developed a new method for creating "management zones" in farm fields by using artificial intelligence to predict how crops will respond to nitrogen fertilizer. Unlike older methods that only look at historical yields, this approach uses a neural network to generate "N-response curves"—graphs showing how yield changes as fertilizer increases—for every spot in a field. To make the AI's decisions easier to understand, the researchers used "counterfactual explanations," which essentially ask: "What would have to change for this spot to behave differently?" The study found that terrain features like slope and soil moisture are the most important factors; for example, steep slopes often lead to fertilizer runoff, which makes those areas less responsive to treatment. This helps farmers apply fertilizer more accurately, saving money and reducing environmental impact.
https://arxiv.org/abs/2403.10730
http://www.w3.org/2000/01/rdf-schema#label
Counterfactual Analysis of Neural Networks Used to Create Fertilizer Management Zones
https://arxiv.org/abs/2403.10730
https://schema.org/funder
https://ror.org/02w0trx84
https://arxiv.org/abs/2403.10730
https://w3id.org/fdof/ontology#hasMetadata
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU
https://arxiv.org/abs/2403.10730
https://www.w3.org/ns/dcat#contactPoint
john.sheppard@montana.edu
https://arxiv.org/abs/2403.10730
https://www.w3.org/ns/dcat#endDate
2024
https://arxiv.org/abs/2403.10730
https://www.w3.org/ns/dcat#startDate
2023
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU/provenance
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU/assertion
http://www.w3.org/ns/prov#wasAttributedTo
https://orcid.org/0009-0008-8411-2742
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU/pubinfo
https://orcid.org/0009-0008-8411-2742
http://xmlns.com/foaf/0.1/name
Emily Regalado
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU
http://purl.org/dc/terms/created
2026-01-14T06:28:06.266Z
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU
http://purl.org/dc/terms/creator
https://orcid.org/0009-0008-8411-2742
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU
http://purl.org/dc/terms/license
https://creativecommons.org/licenses/by/4.0/
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU
http://purl.org/nanopub/x/introduces
https://arxiv.org/abs/2403.10730
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU
http://purl.org/nanopub/x/wasCreatedAt
https://nanodash.knowledgepixels.com/
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU
https://w3id.org/np/o/ntemplate/wasCreatedFromProvenanceTemplate
https://w3id.org/np/RA7lSq6MuK_TIC6JMSHvLtee3lpLoZDOqLJCLXevnrPoU
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU
https://w3id.org/np/o/ntemplate/wasCreatedFromPubinfoTemplate
https://w3id.org/np/RA0J4vUn_dekg-U1kK3AOEt02p9mT2WO03uGxLDec1jLw
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU
https://w3id.org/np/o/ntemplate/wasCreatedFromPubinfoTemplate
https://w3id.org/np/RAukAcWHRDlkqxk7H2XNSegc1WnHI569INvNr-xdptDGI
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU
https://w3id.org/np/o/ntemplate/wasCreatedFromTemplate
https://w3id.org/np/RArM5GTwgxg9qslGX-XiQ-KTTUwdoM0KB1YqmT4GqTizA
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU/sig
http://purl.org/nanopub/x/hasAlgorithm
RSA
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU/sig
http://purl.org/nanopub/x/hasPublicKey
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAxzr6UBGMW6c8tegz0babaledWUEQ0PLDE4tp7Iinbe2DZtAtY5JUptKYuStWDZx+QER4808P8dejNWRnBDzgthYJm/AyNSXflHSJhz2+NC+h7RylOLxbwLEQocmyKKiYxa2gT85m6ajVL2M6TnfG67nnK+K2f7iCGL6wYXRITD1q+7+5SWqBdDXIV921W4IKWaD2GJk+NRBoOqQhbsrk8Tn5XsNd7DMYVHk47oMDGbeBnrOIoRPsbBgAcoCsxxhiB9yN6Lf8EUbnlXVEDzJuZk048L1BDZL+6nkA8btTQGP2ijUFWA7rTrod3LjUDQWLZS95njjl867dtmv/znYkzwIDAQAB
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU/sig
http://purl.org/nanopub/x/hasSignature
UrxByElcB/zTShSOr+qUN0gZAn9vvrqJtIoSbBKHAy+89bROtm6gMLMYe84KbSsKPOeYUXTeYHK1H4pitwq2FGlUCvSLbz7MMaZtGU5C4OjmmCpnlCw9gmT5XUI90OtuYvLXYGLrN0IkgW+YDvf0wkLPxkXIp6h0rXgQpQo0nR/dwbqTXlC8gcBQE8GnhMCf5PHayCVHTVfhYoY/qsnbF2H+K2HpUSqlcpdUcIMcPmhFC7Q31L0LC2JZSDj74JCY/CopnakgFoZDby7oo7HnLGLU3l0ovjfAr+2p0Nz7mjaUhA1+cwbjO1Jenw9KzNo2BokCHvlEkztFK9RqD2o0yA==
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU/sig
http://purl.org/nanopub/x/hasSignatureTarget
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU
https://w3id.org/np/RAtIdRPUDNxkLARl5U_GDNWRS4HUOlUvRO2wlguCH6hLU/sig
http://purl.org/nanopub/x/signedBy
https://orcid.org/0009-0008-8411-2742